Support Vector Machine

Neil Zhang

ECE 208/408 – The Art of Machine Learning

Linear SVM classification

SVM finds the hyperplane that separates the classes with the widest margin

Optimal margin classifier

Objective function

$$\min_{\mathbf{w}} \ \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

s.t. $y_n(\mathbf{w}^T \mathbf{x}^{(n)} + b) \ge 1$
 $\forall n.$

Derive on blackboard

Sensitive to feature scales

Sensitive to outliers

Soft margin classification

Introduce a slack variable ξ_n to allow margin violations

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^N \xi_n$$
s.t. $y_n (\mathbf{w}^T \mathbf{x}^{(n)} + b) + \xi_n \ge 1,$
 $\xi_n \ge 0, \ \forall n.$

Derive on blackboard

Soft margin classification

Summary of linear SVM classifier

Find the maximized margin between two classes

Soft margin classification allows margin violations controlled by a hyperparameter C

https://scikit-learn.org/stable/modules/generated/sklearn .svm.LinearSVC.html

Non-linearly separable

Add a non-linear feature $x_2 = (x_1)^2$

Adding polynomial features

- Adding polynomial features works with many ML models
 - High polynomial degree creates a huge number of

features

How we handle non-linearity?

Feature mapping

Inner product is computationally expensive

To solve the optimization problem, we need to calculate the dot products of the transformed features.

$$w^{T}x + b = \left(\sum_{i=1}^{n} \alpha_{i} y^{(i)} x^{(i)}\right)^{T} x + b$$
$$= \sum_{i=1}^{n} \alpha_{i} y^{(i)} \langle x^{(i)}, x \rangle + b.$$

Kernel trick

Get the same result without adding the polynomial features.

$$k(x, x') = \boldsymbol{\phi}(x)^{\mathrm{T}} \boldsymbol{\phi}(x') = \sum_{i=1}^{M} \phi_i(x) \phi_i(x')$$

We don't need to apply the underlying transformations to the features, as long as the kernel preserves the inner product.

An example kernel

$$K(x, z) = (x^T z)^2.$$

$$K(x, z) = \left(\sum_{i=1}^d x_i z_i\right) \left(\sum_{j=1}^d x_j z_j\right)$$

$$= \sum_{i=1}^d \sum_{j=1}^d x_i x_j z_i z_j \qquad \phi(x) = \begin{bmatrix} x_1 x_1 \\ x_1 x_2 \\ x_1 x_3 \\ x_2 x_1 \\ x_2 x_2 \\ x_2 x_3 \\ x_3 x_1 \\ x_3 x_2 \\ x_3 x_3 \end{bmatrix}$$

Why applying kernel trick is better?

Reduce computational complexity

In this case,

 $O(d^2) \rightarrow O(d)$

$$\phi(x) = \begin{bmatrix} x_1 x_1 \\ x_1 x_2 \\ x_1 x_3 \\ x_2 x_1 \\ x_2 x_2 \\ x_2 x_3 \\ x_3 x_1 \\ x_3 x_2 \\ x_3 x_3 \end{bmatrix}$$

 $K(x,z) = \sum_{i,j=1}^d (x_i x_j)(z_i z_j)$

Test a kennel is valid or not

Find the underlying transformation ϕ

$$k(x, x') = \boldsymbol{\phi}(x)^{\mathrm{T}} \boldsymbol{\phi}(x')$$

A better way (Out of scope):

Gram matrix should be positive semi-definite.

Polynomial kernel

degree-*M* polynomials

$$K(x, x') = \left(x^T x' + c\right)^M$$

Gaussian Radial Basis Function (RBF) Kernel

$$K(x, x') = e^{-\gamma ||x - x'||^2}$$

Gaussian kernel has infinite dimensionality

Taylor's series expansion

$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Exponential Function

 e^x

Exponential Function (Taylor's Version)

Gaussian RBF kernel trick

 $\gamma = 0.1, C = 0.001$ $\gamma = 0.1, C = 1000$ 1.5 1.0 $x_{2}^{0.5}$ 0.0 -0.5-1.0 $\gamma = 5, C = 0.001$ $\gamma = 5, C = 1000$ 1.5 1.0 $x_2^{0.5}$ 0.0 -0.5 -1.0-1.5 -1.0 -0.5 0.0 2.0 -1.5 -1.0 -0.5 0.0 1.5 2.0 0.5 1.0 1.5 0.5 1.0 X_1 X_1 (Figure from Géron figure 5-9)

Less regularized Overfitting

Less regularized Overfitting

Summary: Why SVM?

Optimal margin classifier

Kernel trick for non-linearly separable classes

Note: Kernel trick is not limited to SVM, it can be applied to any algorithm that involves inner products.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Question

- Can an SVM classifier output a confidence score when it classifies an instance? What about a probability?
- An SVM classifier can output the distance between the test instance and the decision boundary, and you can use this as a confidence score. However, this score cannot be directly converted into an estimation of the class probability.
- If you set probability=True when creating an SVM in Scikit-Learn, then after training it will calibrate the probabilities using Logistic Regression on the SVM's scores (trained by an additional five-fold cross-validation on the training data).

Some concepts we did not cover

Representer theorem

Lagrange duality

Karush–Kuhn–Tucker conditions

Dual form

Gram matrix