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Linear SVM classification

SVM finds the hyperplane that separates the classes with the widest margin
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(Figure from Géron figure 5-1)
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Optimal margin classifier
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(Figure from Support Vector Machine (SVM)
basics and implementation in Python)
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https://www.reneshbedre.com/blog/support-vector-machine.html
https://www.reneshbedre.com/blog/support-vector-machine.html

Sensitive to feature scales
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Sensitive to outliers
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Soft margin classification

Introduce a slack variable &, to allow
margin violations

Derive on blackboard

. X
(Figure from Using Support Vector Machines for
Survey Research | Published in Survey Practice)
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https://www.surveypractice.org/article/2715-using-support-vector-machines-for-survey-research
https://www.surveypractice.org/article/2715-using-support-vector-machines-for-survey-research

Soft margin classification
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Summary of linear SVM classifier

Find the maximized margin between two classes

Soft margin classification allows margin violations
controlled by a hyperparameter C

https://scikit-learn.orqg/stable/modules/generated/sklearn
.svm.LinearSVC.html

Support Vector Machine, ECE 208/408 - The Art of Machine Learning, Spring 2023


https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

Non-linearly separable

Add a non-linear feature x, = (x1)2
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(Figure from Géron figure 5-5)
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Adding polynomial features

e Adding polynomial features works with many ML models

o High polynomial degree creates a huge number of

features 16 = s
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How we handle non-linearity?

Feature mapping
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(Figure from The Kernel Trick in Support Vector
Classification | by Drew Wilimitis | Towards Data Science )
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https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f
https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f

Inner product is computationally expensive

To solve the optimization problem, we need to calculate the dot products of the
transformed features.
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Kernel trick

Get the same result without adding the polynomial features.
M
k(z,2) = ¢p(2)"p(a)) = ) di(z)i(a)
1=1

We don’t need to apply the underlying transformations to the features, as long as
the kernel preserves the inner product.
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An example kernel
K(z,z) = (z'2)°
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Why applying kernel trick is better?

Reduce computational complexity
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In this case,
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Test a kennel is valid or not

Find the underlying transformation qb

k(z,2') = ¢(z)" P(2')

A better way (Out of scope):

Gram matrix should be positive semi-definite.
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Polynomial kernel

degree-M polynomials

K(z,z') = (z" 2’ + C)M
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Gaussian Radial Basis Function (RBF) Kernel

K(z,2') = e lz=='I
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Gaussian kernel has infinite dimensionality

Taylor’s series expansion
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Gaussian RBF kernel trick
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Summary: Why SVM?

Optimal margin classifier

Kernel trick for non-linearly separable classes

Note: Kernel trick is not limited to SVM, it can be applied to any algorithm
that involves inner products.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

Question

e (Can an SVM classifier output a confidence score when it classifies an
instance? What about a probability?

e An SVM classifier can output the distance between the test instance
and the decision boundary, and you can use this as a confidence
score. However, this score cannot be directly converted into an
estimation of the class probability.

e If you set probability=True when creating an SVM in Scikit-Learn,
then after training it will calibrate the probabilities using Logistic
Regression on the SVM'’s scores (trained by an additional five-fold
cross-validation on the training data).
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Some concepts we did not cover

Representer theorem

Lagrange duality
Karush—Kuhn—Tucker conditions
Dual form

Gram matrix
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